PH 112: Global Health: A Multidisciplinary Examination  
Prerequisite(s): N/A  
This course examines health at the individual and community/global level by examining the interplay of many factors, including the legal, social, political, and physical environments; economic forces; access to food, safe water, sanitation, and affordable preventive/medical care; nutrition; cultural beliefs and human behaviors; and religion; among others. Students will be expected to read, understand, and use advanced materials from diverse disciplines. Class accompanied by case-based discussions. 4 units (Spring)

PH 140: INTRODUCTION TO RISK AND DEMOGRAPHIC STATISTICS  
Prerequisite(s): One year of calculus.  
Statistical and evaluation methods in studies of human mortality, morbidity, and natality. History of statistical terminology and notation, critical appraisal of registry and census data, measurement of risk and introduction to life tables. Computational systems and the analysis of mass data. 4 units (Fall)

PH 141: INTRODUCTION TO BIOSTATISTICS  
Prerequisite(s): high school algebra.  
An intensive introductory course in statistical methods used in applied research. Emphasis on principles of statistical reasoning, underlying assumptions, and careful interpretation of results. Topics covered: descriptive statistics, graphical displays of data, introduction to probability, expectations and variance of random variables, confidence intervals and tests for means, differences of means, proportions, differences of proportions, chi-square tests for categorical variables, regression and multiple regression, an introduction to analysis of variance. Statistical software will be used to supplement hand calculation. This course may not be used to fulfill the Biostatistics course requirement for the MPH degree. 5 units (Summer)

PH 142: INTRODUCTION TO PROBABILITY & STATISTICS IN BIOLOGY & PUBLIC HEALTH  
Prerequisite(s): high school algebra.  
Descriptive statistics, probability, probability distributions, point and interval estimation, hypothesis testing, chi-square, correlation and regression with biomedical applications. 4 units (Fall)

PH 144A: INTRODUCTION TO SAS PROGRAMMING.  
Prerequisite(s): PH 142 or consent of instructor.  
This course (or equivalent) is required for students who plan to enroll in 251A, Practicum in Epidemiological Methods. Enrollment is limited to School of Public Health students. If space permits, others may enroll with consent of instructor. Two hours of lecture, three hours of laboratory, and two hours of work outside of class per week for eight weeks.  
This course is intended to serve as an introduction to the SAS programming language for Windows in an applied, workshop environment. Emphasis is on data management and programming in a public health research setting. Topics include SAS language to compute, recode, label, and format variables as well as sort, subset, concatenate, and merge data sets. SAS statistical procedures will be used to compute univariate and bivariate summary statistics and tests, simple linear models, graphical plots, and statistical output data sets. 2 units (Spring)
PH 145: STATISTICAL ANALYSIS OF CONTINUOUS OUTCOME DATA  
Prerequisite(s): PH 142.  
Regression models for continuous outcome data: least squares estimates and their properties, interpreting coefficients, prediction, comparing models, checking model assumptions, transformations, outliers, and influential points. Categorical explanatory variables: interaction and analysis of covariance, correlation and partial correlation. Appropriate graphical methods and statistical computing. Analysis of variance for one- and two-factor models: F tests, assumption checking, multiple comparisons. Random-effects models and variance components. Introduction to repeated-measures models. 4 units (Spring)

PH 150A: INTRODUCTION TO EPIDEMIOLOGY AND HUMAN DISEASE  
Prerequisite(s): A course in statistics (preferably PH 142)  
This course introduces epidemiological methods with the goal of teaching students to read critically and interpret published epidemiologic studies in humans. The course also exposes students to the epidemiology of diseases and conditions of current public health importance in the United States and internationally. 3 units (Spring)

PH 200C (1, 2, & 3): PUBLIC HEALTH CORE BREADTH SEMINAR (all required)  
Prerequisite(s): Graduate standing or consent of instructor.  
PH 200C1(HPM): Health policy and management applies concepts from economics, organizational behavior, and political science to the structure, financing, and regulation of the public health and health care delivery systems. This breadth course is designed to give MPH students a basic set of competencies in the domains central to the field. 2 units (Fall)  
PH 200C2(EHS): This course will give an introduction to the major human and natural activities that lead to release of hazardous materials into the environment as well as the causal links between chemical, physical, and biological hazards in the environment and their impact on human health, including those related to climate change. The basic principles of toxicology, exposure assessment, risk assessment, risk perception, and environmental health policy will be presented. The overall role of environmental risks in the pattern of human disease, both nationally and internationally, will be covered. 2 units (Fall)  
PH 200C3(HSB): Health and social behavior uses theory and research from the behavioral sciences to explain the causes and health effects of salutary and risky behavior. 2 units (Spring)

PH 202G: ADVANCED ALCOHOL RESEARCH SEMINAR  
Prerequisite(s): Graduate standing or consent of instructor  
This course is an advanced alcohol research seminar in which presentations are made by alcohol research scientists nationally and internationally, as well as pre-and post-doctoral fellows, and focus on special topical areas related to psychosocial research in the field each semester. Areas covered include the epidemiology of drinking patterns and alcohol-related problems, issues related to treatment of alcohol-related problems, and health services research. Guest presentations are also provided (related to topics outside psychosocial research) to provide a breadth of understanding in the field. The seminar also includes sessions focused on methodological issues in alcohol-related research and grant writing, and has a research ethics component covering a number of sessions. 1 unit (Fall, Spring)
PH 207A: PUBLIC HEALTH ASPECTS OF MATERNAL AND CHILD NUTRITION

Prerequisite(s): Course in epidemiology required; previous coursework in biology and nutritional science highly recommended.

Nutrition plays a vital role in human reproduction and child growth and development. This course provides an overview of the major nutritional issues faced by women of childbearing age, infants, children, and adolescents in the United States and around the world, with selected topics explored in greater depth. Nutritional problems are multi-factorial and occur at multiple levels and we will study them from a variety of viewpoints (biological, psychological, socio-cultural, economic, political, and behavioral) as well as from individual and population perspectives. Participants in the course will become acquainted with nutritional research, policies, and interventions designed to enhance reproduction, growth, and development. This course will also explore health disparities in maternal and child nutrition in both a domestic and international context. 2 units (Spring)

PH 210D: REPRODUCTIVE AND PERINATAL EPIDEMIOLOGY

Prerequisite(s): Graduate standing or consent of instructor

Research methods and issues in perinatal and reproductive epidemiology with emphasis on methods of study. Specific adverse reproductive outcomes, risk factors, and prevalence will be discussed. Will include critiques of published studies and techniques of proposal writing. 2 units (Spring)

PH 217C: AGING AND PUBLIC HEALTH

Prerequisite(s): Graduate standing or consent of instructor

The purpose of this course is to provide an overview of research, practice, and policy in the area of aging and public health. Topics will include the epidemiology of aging; race, class, gender, and aging; nutrition and the elderly; and current health policy surrounding aging. Themes running throughout the course and linking a number of the topics covered will include the diversity of the elderly; the importance of co-morbidity and functional health status in this population group; the family and broader environmental contexts in which aging takes place; and the influence of public and private sector policies on health and health-related behavior in the elderly. Weekly lectures by the faculty will be complemented by presentations by prominent Bay Area researchers in the areas of geriatrics and gerontology. This is the core course for the School of Public Health specialty in aging and public health. 3 units (Spring)

PH C240B: BIOSTATISTICAL METHODS: SURVIVAL ANALYSIS AND CAUSALITY.

Prerequisite(s): Statistics 200B (may be taken concurrently).

Analysis of survival time data using parametric and non-parametric models, hypothesis testing, and methods for analyzing censored (partially observed) data with covariates. Topics include marginal estimation of a survival function, estimation of a generalized multivariate linear regression model (allowing missing covariates and/or outcomes), estimation of a multiplicative intensity model (such as Cox proportional hazards model) and estimation of causal parameters assuming marginal structural models. General theory for developing locally efficient estimators of the parameters of interest in censored data models. Computing techniques, numerical methods, simulation and general implementation of biostatistical analysis techniques with emphasis on data applications. Also listed as Statistics C245B. Offered even-numbered years. 4 units (Spring)

PH 241: STATISTICAL ANALYSIS OF CATEGORICAL DATA

Prerequisite(s): PH 142 or consent of instructor.

Biostatistical concepts and modeling relevant to the design and analysis of multifactor population-based cohort and case-control studies, including matching. Measures of association, causal inference, confounding interaction. Introduction to binary regression, including logistic regression. 4 Units (Spring)
PH C242C: LONGITUDINAL DATA ANALYSIS  
Prerequisite(s): PH 142, PH 145, PH 241 or equivalent courses in basic statistics, linear and logistic regression.  
The course covers the statistical issues surrounding estimation of effects using data on subjects followed through time. The course emphasizes a regression model approach and discusses disease incidence modeling and both continuous outcome data/linear models and longitudinal extensions to nonlinear models (e.g., logistic and Poisson). The primary focus is from the analysis side, but mathematical intuition behind the procedures will also be discussed. The statistical/mathematical material includes some survival analysis, linear models, logistic and Poisson regression, and matrix algebra for statistics. The course will conclude with an introduction to recently developed causal regression techniques (e.g., marginal structural models). Time permitting, serially correlated data on ecological units will also be discussed. Offered even-numbered years. 4 units (Spring)  

PH 243D: TOPICS IN BIOSTATISTICS: ADAPTIVE DESIGNS  
Prerequisite(s): Prior biostatistics or statistics course, or consent of instructor.  
This course examines the theory and statistical methods for analyzing data generated by adaptive group sequential designs. It also considers the construction of targeted adaptive group sequential designs that adapt in a way that is optimal for the estimation of a particular target feature of the data generating experiment (i.e., causal effect of the treatment). Topics to be covered include: sequential testing, adaptive sample size, martingale estimating functions to construct estimators, targeted maximum likelihood estimation for adaptive designs, targeted Bayesian learning for adaptive designs, martingale theory for the analysis of estimators for adaptive designs. Offered even-numbered years. 3 units (Fall)  

PH 245: INTRODUCTION TO MULTIVARIATE PUBLIC HEALTH STATISTICS  
Prerequisite(s): PH 142 or consent of instructor.  
The following topics are discussed in the context of biomedical and biological application: multiple regression, loglinear models, discriminant analysis, principal components. Instruction in statistical computing is given in the laboratory session. 4 units (Fall)  

PH 248: STATISTICAL/COMPUTER ANALYSIS USING R  
Prerequisite(s): Statistics 200A (may be taken concurrently) or PH 142, PH 145, and PH 245.  
The material presented will focus on learning the programming language R, which will be taught in the context of reviewing and introducing a number of statistical methods. Four topic areas will be presented focusing on implementation; these are descriptive methods, simulation techniques, linear models, and estimation. The goal of the course is to provide a package of statistical techniques along with new and advanced computer tools for implementation. 3 units (Fall)  

PH 250A: EPIDEMIOLOGIC METHODS I  
Prerequisite(s): PH 142 (may be taken concurrently).  
Principles and methods of epidemiology: study design, selection, and definition of cases and controls; sampling, data collection, analysis, and inference. Discussion session provides an opportunity to apply methods to problem sets and to discuss issues presented in lectures. 3 units (Spring or Fall)
PH 250B: EPIDEMIOLOGIC METHODS II
Prerequisite(s): 250A or an equivalent introductory course in epidemiology or consent of instructor.
This course is intended as an intermediate level course in the field of epidemiology. Topics include causal inference; measurement of disease rates; inferential reasoning; and research study designs including ecologic, case-control, cohort, intervention trials, and meta-analytic designs (potential sources of bias, confounding, and effect modification in each research design are explored in depth); topics in clinical epidemiology including the use of likelihood ratios, receiver operator curves, and the sensitivity, specificity, predictive value of a test; and a brief introduction to logistic regression, survival analysis, and decision analysis. The readings from this course are drawn primarily from advanced epidemiology textbooks (Kleinbuam, Rothman, Miettinen). The course is intended to provide a firm foundation for students who will subsequently enroll in 250C. 4 units (Fall)

PH 250C: EPIDEMIOLOGIC THEORY
Prerequisite(s): PH 241, PH 245, and PH 250B, or consent of instructor.
This course is a continuation of 250B. The course covers many of the same topics as 250B but explores them in greater breadth and depth. Topics that follow from 250B include causal inference; the interrelation between measures of disease frequency; the theory that underlies case-control studies and the practical issues that relate to implementation of case-control studies; and further exploration of the quantitative aspects of bias, confounding, propensity scores, and measurement error. An introduction to the theory of ecological studies and mixed model analysis also are provided. Readings are primarily from the epidemiologic methods literature, and problems are based on the evaluation of published data. The course is divided into a series of modules that range in length from 1-4 weeks: causal inference/models of causality; epidemiologic measures of disease occurrence and their inter-relations; standardization of rates; bias and validity--general consideration; misclassification/measurement error; confounding; matching; case-control studies; ecological studies. 4 units (Spring)

PH 251A: PRACTICUM IN EPIDEMIOLOGIC METHODS I
Prerequisite(s): PH 250A; PH 145 or PH 241B concurrently; consent of instructor.
A two-semester sequence intended for students in the Epidemiology/Biostatistics MPH program and other qualified graduate students. This is a practicum course in research design data analysis. Students select a research question and learn practical skills to analyze a large database in order to answer the research question. The course teaches use of CMS and SAS in performing univariate analyses; students also learn critically to review scientific literature. Students are required to complete computer assignments, an oral presentation of a literature review with handouts for class, a final presentation (as would be presented at a scientific meeting), and a final report in a style for a publishable manuscript. 4 units (Spring)

PH 251C: CAUSAL INFERENCE AND META-ANALYSIS IN EPIDEMIOLOGY
Prerequisite(s): Consent of instructor.
This course will review the theoretical aspects of causal inference, literature review, and meta-analysis, but its focus will be more on the practical aspects of these topics that are not commonly found in textbooks or presented in classes on epidemiologic theory. It is hoped that the student develops the day-to-day skills necessary to complete and present a well-documented, accurate, and thorough review of epidemiologic literature. 2 units (Fall)
PH 251D: APPLIED EPIDEMIOLOGY USING R
Prerequisite(s): Graduate standing or consent of instructor.
This is an intensive, one-semester introduction to the R programming language for applied epidemiology. R is a freely available, multi-platform (Mac OS, Linux, and Windows, etc.), versatile, and powerful program for statistical computing and graphics (http://www.r-project.org). This course will focus on core basics of organizing, managing, and manipulating epidemiologic data; basic epidemiologic applications; introduction to R programming; and basic R graphics. 2 units (Fall)

PH 252: EPIDEMIOLOGIC ANALYSIS
Prerequisite(s): PH 250A, PH 245, or consent of instructor.
This course consists of two distinct components: (1) advanced treatment of epidemiologic methods: matched data, spatial analysis, logistic and Poisson regression models; (2) survival analysis: Kaplan-Meier estimation, survival distributions, parametric and semi-parametric survival analysis models. Students are encouraged to concurrently enroll in 248L which carries the prerequisite of a working knowledge of the statistical computing language R. 3 units (Fall)

PH 252A: APPLIED SAMPLING AND SURVEY DESIGN ANALYSIS
Prerequisite(s): Graduate standing or consent of instructor.
This course will cover the basic principles and methods of sampling and survey design. The weekly lecture will cover the principles of sampling and include a discussion of various case studies. The computer laboratory will consist of exercises that develop skills for using computers to draw samples and to solve sampling problems. The material covered in the computer laboratory session will generally correspond to the topics covered in the preceding class meetings. Offered even-numbered years. 3 units (Spring)

PH 252C: INTERVENTION TRIAL DESIGN
Prerequisite(s): PH 245 & PH 250A (may be taken concurrently).
Students learn (through lectures and graded student presentations and projects) to design clinical and population-level field trials. Topics: formulation of a testable hypothesis; identification of appropriate populations; blinding (including indices for assessment); randomization (including traditional and adaptive randomization algorithms); sample-size estimation; recruitment strategies; data collection systems; quality control and human subjects responsibilities; adverse effects monitoring; improving participant adherence; use of surrogate outcomes. 3 units (Fall)

PH 252D: INTRODUCTION TO CAUSAL INFERENCE
Prerequisite(s): PH 241 or PH C240A (can be taken concurrently); 245 or similar course covering multivariable linear and logistic regression analysis; for epidemiology students, 250C, or consent of instructor.
This course presents a general framework for causal inference using directed acyclic graphs, non-parametric structural equation models, and counterfactuals. Marginal structural models and causal effect estimation using inverse probability of treatment weighting, G-computation, and targeted maximum likelihood are introduced. In two-part presentations, students will define and implement research questions. 4 units (Fall)

PH 253A: TOPICS IN DISEASE SURVEILLANCE
Prerequisite(s): Graduate standing or consent of instructor.
Ways of doing surveillance for infectious and non-infectious diseases; how the reasons for doing surveillance determine the system selected; and how to evaluate whether or not a given surveillance is providing the data needed to meet various goals. The impact of various biases on the conclusions derived from surveillance data will be explored. Offered even-numbered years. 2 units (Spring)
PH 253B: EPIDEMIOLOGY AND CONTROL OF INFECTIOUS DISEASES  
Prerequisite(s): Prior degree or courses in biomedical sciences and consent of instructor.

A discussion of major infectious diseases with emphasis on disease surveillance, investigative procedures, and prevention programs. Emphasis is on current problems in health agencies at a state, national, and international level. 3 units (Fall)

PH 253C: AN OVERVIEW OF THE AIDS EPIDEMIC  
Prerequisite(s): Graduate standing or consent of instructor.

The aim is to understand the origin, transmission, and natural history of AIDS and the opportunities which exist to slow the spread of HIV, especially the dynamics and the timing of possible preventive measures. The course compares the cost of care and prevention and analyzes the social and political barriers that influence the allotment of resources. The course will use examples of government and private sector responses to the care of People with AIDS and to preventive measures from the USA and around the world. 3 units (Fall)

PH 253D: BEHAVIOR AND POLICY SCIENCE IN HIV TREATMENT AND PREVENTION  
Prerequisite(s): Graduate standing or consent of instructor.

This course will integrate various social science disciplines and apply these perspectives to problems of HIV treatment and prevention, particularly in the developing world. Throughout the academic term, students will apply knowledge of behavioral science, epidemiology, quantitative and qualitative methods in the analysis of developing and evaluating HIV-related treatment and prevention interventions, including policy interventions. Course requirements will include the preparation of a major paper recommending interventions, country level budgets and evaluation designs for a specific developing country. Specific requirements for this paper will be distributed during the third class session. 3 units (Fall)

PH 253E: ETHICAL CHALLENGES IN PUBLIC HEALTH INTERVENTIONS (CATASTROPHIC & ROUTINE)  
Prerequisite(s): Graduate standing or consent of instructor.

This course aims to enhance course participants' ability to articulate and examine ethical issues surrounding responses to public health/healthcare challenges whether routine or during catastrophe. Discussions will be based on presentations and assigned readings for the class, and with an expectation that students will incorporate their own diverse views and approaches to moral and logistical challenges. 2 units (Spring)

PH 254: OCCUPATIONAL AND ENVIRONMENTAL EPIDEMIOLOGY  
Prerequisite(s): PH 250A.

Epidemiological methods for designing, conducting, and interpreting epidemiological studies of persons occupationally or environmentally exposed to chemical and physical agents. 3 units (Spring)

PH 255A: SOCIAL EPIDEMIOLOGY  
Prerequisite(s): Consent of instructor. 142, 145, and 250A-250B recommended.

This course is designed to introduce students to the field of social epidemiology and its role in understanding the social determinants of population health and health disparities. This course will provide a systematic and selected overview of literature in the field covering the history and development of the field of social epidemiology, theoretical perspectives, major topical areas, conceptual approaches, and current controversies related to theory, research methods, and research findings. Three principles will be emphasized throughout the course: 1) the ecological model, 2) the lifecourse approach, and 3) causality. These principles will provide a framework for the critical analysis of scholarly journal articles and the synthesis of information across content areas. This is a breadth course intended to provide an overview of the field of social epidemiology; and expose students to relevant areas of study. This is not a methods course. 3 units (Spring)

PH 255C: MENTAL HEALTH AND PSYCPATHOLOGY
Prerequisite(s): Open to doctoral students or with consent of instructor.

This doctoral seminar is designed to provide an understanding of the complex (and often interactive) individual and environmental conditions that increase the risk of psychopathology in individuals across the life span. We will start by learning about general concepts important to an understanding of psychopathology and prevention of psychopathology, including the "biopsychosocial model," "psychological resilience," and different levels of preventive interventions. For each different area of psychopathology, we will consider: a) the core feature of disorder; b) key theory and empirical evidence regarding etiology and course, with a particular emphasis on understanding the range of risk and protective factors on the individual, family, and community level; and c) the implications of etiological understanding for public health efforts to prevent the particular disorder. **3 units (Fall)**

**PH 255D: METHODS IN SOCIAL EPIDEMIOLOGY**

Prerequisite(s): Graduate standing or consent of instructor.

This course is designed to review, evaluate, and apply methods currently used in the field of social epidemiology. The course aims to teach approaches to forming clear research questions, and selecting the best method(s) to answer the questions posed. Initially we will discuss approaches to defining clear and specific research questions. We will then discuss recent controversies around the meaning of questions posed in social epidemiology, and the ability of currently used methods to answer questions in social epidemiology. Finally we will review, evaluate, and apply a range of different methods that are or could be used to answer questions in social epidemiology, again emphasizing the types of questions answered by these methods, and their ability to address the challenges to effectively answering questions in social epidemiology. There will be a mixture of discussion and lecture depending on the topic, with student participation and questions strongly encouraged. **2 units (Spring)**

**PH 255E: STRUCTURAL INEQUALITIES AND REPRODUCTIVE HEALTH**

Prerequisite(s): PH 250A or equivalent, background in reproductive health, or consent of instructor

This course will address the role that structural inequalities assume in shaping reproductive health disparities. We will examine relevant epidemiological research, review and critique public health interventions, and discuss how research in this area can inform policy. The course will be organized around three modules, each linked to reproductive health: poverty, gender-based violence, and migration. Within each module, students will examine measurement, research design, and ethical challenges. **2 units (Spring)**

**PH 256: MOLECULAR AND GENETIC EPIDEMIOLOGY**

Prerequisite(s): College-level Biology course or consent of instructor. Introductory biostatistics recommended.

This course will cover basic principles of human/population genetics and molecular biology relevant to understanding approaches to molecular and genetic epidemiology: approaches to genome-wide association studies; application of biomarkers to define exposures; recent developments in genomics, epigenomics and other -omics, including next generation sequencing technology and genomics in personalized medicine and health. Hands-on computer and wet laboratory will provide experience with modern research tools. **4 units (Spring)**

**PH 257: OUTBREAK INVESTIGATION**

Prerequisite(s): PH 250A, PH 250B, or an equivalent introductory course in epidemiologic methods.

This course will teach students why and how clusters of illnesses/epidemics are investigated. Methods and approaches required for such investigations will be discussed in detail, using published articles from the scientific literature to provide examples. **2 units (Fall, Spring)**
PH 258: EPIDEMIOLOGY OF NEOPLASTIC DISEASES
Prerequisite(s): PH 150A or PH 250A
For students with a basic understanding of epidemiology, biostatistics, and tumor biology. An introduction to the epidemiology of some major site-specific cancers, considering epidemiological approaches to the study of their causation, and implementation will be discussed. 3 units (Fall)

PH 259A: HISTORY OF EPIDEMIOLOGY.
Prerequisite(s): Graduate standing or consent of instructor.
This course traces the development of epidemiological methodology and theory from the "Golden Age" of Greece in the sixth century B.C. to modern practice at the turn of the 21st century. Consideration will also be given to historical events such as major epidemics and important research activities. The course provides students preparing for academic careers in epidemiology the background to teach and research the field. Case studies will be a major vehicle for accomplishing the course objectives. Original readings will be discussed. Offered alternate-years. 3 units (Fall)

PH 259B: APPLICATIONS OF EPIDEMIOLOGIC METHODS IN DEVELOPING COUNTRIES
Prerequisite(s): Graduate standing or consent of instructor.
Practical application of epidemiologic methods in the developing country settings, including surveillance, surveys, case-control studies, and intervention trials. The applications of these methods to the study of infectious and non-infectious disease problems common in developing countries will be presented. 3 units (Spring)

PH 272B: CASE STUDIES IN ENVIRONMENTAL AND OCCUPATIONAL EPIDEMIOLOGY
Prerequisite(s): PH 250C and PH 241
Using published studies as examples, we will focus on key epidemiologic methods as they arise in the study of environmental hazards in the community and workplace. Selected topics include the validity of exposure assessment for both community-based and workplace-based studies, specific forms of selection bias (e.g., healthy worker survivor effect), measurement error (e.g., exposure misclassification), time varying confounding, and analytical methods to model exposure-response (e.g., person-years, causal models, spatial analysis, and nonlinear models) in environmental and occupational epidemiology. Grades will be based on class participation, homework, and final project. 3 units (Spring)

PH 285A: PUBLIC HEALTH INJURY PREVENTION AND CONTROL
Prerequisite(s): Consent of instructor.
Injuries are a major and often neglected health problem with substantial human and economic costs. Injuries are the leading cause of death from the first year of life to age 45, and the leading cause of lost potential years of life. This course provides an historical and conceptual framework within which to consider injuries (both intentional and unintentional) as social, and public health problems. Through review of epidemiology and intervention studies, course work will consider the causes and consequences of traumatic injury within developmental, social and economic contexts. Particular emphasis is placed on alternative strategies for injury prevention and on the relative benefits of intervention at different levels. 2 units (Fall)

PH 292 (1): SEMINARS FOR MPH STUDENTS: SEXUALLY TRANSMITTED DISEASE CONTROL
Prerequisite(s): Consent of instructor.
Case-based survey of current controversies in public health approaches to sexual health promotion and STD control. Independent research with small-group, interactive, problem-based learning. 2 units (Spring)
PH 292 (6/4): EPIDEMIOLOGY MPH SEMINAR  
(for 1-year MPH students & first-year PhD students)  
Prerequisite(s): Consent of instructor.  
This seminar is required for students in the one-year Epidemiology MPH program and for first-year doctoral students who have not taken it as a masters student. The seminar is devoted primarily to consideration of the history and philosophy of epidemiology, as well as current topics of interest. One or more sessions of the seminar are devoted to discussion of how to prepare the required in-depth paper due early in the Spring semester. **Must be taken for a satisfactory/unsatisfactory grade.** 2 units *(Fall, Spring)*

PH 292 (6): EPIDEMIOLOGY/BIOSTATISTICS MPH SEMINAR  
(for first-semester Epi/Biostat MPH students)  
Prerequisite(s): Consent of instructor.  
This must be taken in the first semester of the first by MPH students in the two-year Epidemiology/Biostatistics program. The fall seminar for first year students is analogous to the fall semester of PH 292(7) (see above). Must be taken for a satisfactory/unsatisfactory grade, 2 units *(Fall)*

PH 293 (8/9, 16): EPIDEMIOLOGY DOCTORAL SEMINAR  
(Section 8/9: for PhD students that *advanced-to-candidacy*)  
(Section 16: for those who have *not yet* advanced-to-candidacy)  
(Section 13/7: on Population Health)  
In the doctoral seminar, doctoral students are expected to make presentations at various stages of development and completion of their thesis research. Critiques of methods papers and writing samples also are expected. Faculty and other guests are also invited to give presentations on their research or other topics of interest. There are two sections: Monday - for students who have passed their oral qualifying examination or have been invited by the instructor; Friday – all new and continuing doctoral students who have not yet passed their oral qualifying examination. Doctoral students are expected to register for and attend the doctoral seminar on a regular basis for at least two years. **2 units (Fall, Spring)**

PH 296: SPECIAL STUDY  
Course may be repeated for credit.  
Independent study. Designed to permit any qualified graduate student to pursue special study under the direction of a faculty member. **1-10 units (Fall, Spring)**

PH 299: INDIVIDUAL RESEARCH  
Students may register for a limited amount of independent study each semester if prior arrangements are made with the faculty member who will supervise the work. **1-12 Units (Fall, Spring)**

Please consult the [Epidemiology Division Class Schedules](#) or check with Roberta Myers or Eugene Konagaya in 113 Haviland Hall for the correct sections and course control numbers for any of the 29X series courses. *(Note: control numbers – and oftentimes, section numbers – change each semester).*
LIST OF SOME USEFUL EPIDEMIOLOGY TEXTBOOKS


